skip to main content


Search for: All records

Creators/Authors contains: "Yang, Jiayan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The western boundary current in the equatorial Atlantic Ocean is a main conduit for water‐mass exchanges across the equator and thus a major pathway for the interhemispheric transports in the Atlantic Meridional Overturning Circulation (AMOC) system. In this study we quantify and examine the mean and seasonal variability of the equatorial western boundary current (EWBC) in the upper ocean layer using two data‐assimilated products, the Estimating the Circulation and Climate of the Ocean (ECCO4r3) and the Simple Ocean Data Assimilation (SODA3). It is found that the EWBC between 10°S and 10°N exhibits two pronounced features in its seasonal variability: (1) the transport varies anti‐symmetrically across the equator, that is, the northward EWBC strengthens to the north of the equator when it weakens to the south of the equator, and vice versa; and (2) the amplitude of seasonal variations is much greater in the northern hemisphere than in the south. We hypothesize that the cross‐equatorial anti‐symmetry in EWBC transport variability is attributable to the impingement of equatorial Rossby waves at the western boundary and the shape of the western boundary is the main cause for the amplified seasonal variability in the northern hemisphere. A simple 1 and 1/2‐layer model is used to test and validate this hypothesis and to elucidate the role of wind forcing and topography plays in the seasonal variability in the EWBC transport.

     
    more » « less
  2. Abstract

    Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another.

     
    more » « less